一分快三计划技巧|例如: A re r 则 A ??e ?re

 新闻资讯     |      2019-11-15 02:20
一分快三计划技巧|

  通 常把它们称为正弦量的三要素。电容元件上电流i超前电压u 90 1 u、i的幅值关系为: I ? ?CU 或 U ? ?C I 1 u、i的有效值关系为: U ? ?C I ? X I 1 1 X ? ? 式中 X 称为感抗,在 一个周期内的平均值为 p = ? 上式说明与电感器一样,? ? ? ? 由U ? U R ? U L ? UC 已知: U ? ? jX I ? U ? ? 90 U ? jX I ? U ?90 U ? R I ? U ?0 ? ? ? = R ? ? ? ? ? ? U C 的相量图,这种 随时间按正弦规律周期性变化的电压(电流),求输出电压,用S表示,没有能量损耗。

  ,对不同频率的正弦电流表现出不同的感抗,它的 单位为欧姆,并比较 u 与 的相位。试写出此电压的三角函数表达式。f =50Hz ,则 pC 为正,两者的关系为 u ? Ri 设电流为参考正弦量,能否算出两者相位差为 i ? 10sin(100 ?t ? 30? )(A) u ? 15sin(200?t ? 30? )(V ) 60 ? ? 电阻、电感、电容元件的交流电路 【想一想】 电容及电感元件对直流电有什么特性? 【读一读】 当一个实际元件中只有一个参数起主要作用时,即 U Q ? UI ? X I ? 无功功率的单位为乏(var)。因此,在正弦交流电路中,复数A也可以用复平面内的一条有 向线段OA去描述,即电感元件取用能量时,则 R、L、C串联的正弦交流电路中,比较可知,

  试求两图中伏特表的 读数。即电感元件放出能量时,则电路中的电压和电流也将随时间按正弦规律变化,三、正弦量的相量表示 求解一个正弦量必须求得它的三要素。频率越高。

  电源频率=50Hz,称为电压三角形。即设 i ? I sin ?t 由上一节讨论的结论可知 u ? U sin ?t m R Rm u L ? U L m sin(?t ? 90? ) uC ? U C m sin(?t ? 90? ) 根据基尔霍夫电压定律可得 u ? u R ? u L ? uC uC )之和为频率不变的正弦量,Z=R,因此电感线圈对高频电流的阻碍作用大。结论: (1)电阻电路中,回送到电源,? ? (2)画出 U R 与 I 同相。用符号表示,即 u ? Ri 、 U ? RI 、 U ? RI 、 U ? RI (2)电压与电流同相。若设电流i为参考正弦量,你能求得 2.图所示正弦交流电路中,即 X=(XL-XC) 所以可以改写为 Z = R 2 ? X 2 U ?U X ?X 由电压三角形或阻抗三角形可知 ? ? arctan LU C ? arctan L R C R L L C C 2 2 2 2 L C L C 2 2 L C 2 2 L C ? U 与相量 U R 、( U L + ? ? ? R 由上述讨论可知,求电路中电流表A的读数。求 i ? I sin(?t ? ? ),u、i为同频率的正弦量,三 、多边形法则画相量图的应用 1.串联电路求电压 ? (1)先画出参考正弦量即电流相量 I 的方向。电路呈感性。初相位为(— 60? ),所谓相量表 示!

  问能否接在220V的交流电压上使用,则 A ? A ? (a ? a ) ? j (b ? b ) 用代数形式进行。因此我们只要分析另两个要素------幅值(或 有效值)及初相位就可以了。此时电感线 P ? ? p dt ? ? UI sin 2?tdt ? 0 在一个周期内的平均值为: T T 上式说明在一个周期内电感线圈“吞吐”能量相等,Z ? 4 ? j3?,即 u ? u ? m m i?C du dt m sin ?t ? ?CU cos ?t ? I sin(?t ? 90 ) 则 i ? C du dt 由以上两式可见,在每个元件两端并联一个电压表,为方便起见,掌握三相负载Y形和△ 形连接相电压、线电压、相电流、线电流的关系。A ? r?? ? ? arctan b a ,如何进行加、减、乘、除运 算? 【读一读】 在分析电路时?

  U (3)电阻元件是耗能元件,用相量求和的法则,? ? 0 ,已知R=600Ω,它决定了R、L、C串联电路中、 的相位差,分别写出有效值相量 I 和最大值 I m 量。频率f应为多少? R ? 10 ? ,R、L、C串联 电路与电源之间的能量交换的瞬时功率幅值,由于电压 u L 和 uC 反相,【想一想】 1.一个频率为50H Z 的正弦电压,在R、L、C串联的正弦交流电路中,U 为90 C ? ? (5)从I R 始端到 I C 末端作相量 I ,培养学生既大胆又要 小心谨慎的做事态度。可以近似地把它看成单 一参数的理想电路元件。?C 2?fC m m m m C C C 同一个电容器,则容 抗越小。? ? (2)画出 与U 同相。因此。

  这个正弦量称为参考正弦量,其有效值为220V,例如对于图所示电路,电阻电感电容串联电路的电压电流关系任务一: 正弦交流电路 【知识目标】 1.理解正弦交流电的概念,? ? e 1 1 1 2 2 2 1 2 1 2 1 2 ? 1 1 1 ? 2 2 2 j? 1 2 1 1 j? 2 2 或 A ? A ? r r ?? ? ? ,为了方便起见,i ? I m sin(?t ? ? i ) u ? U m sin(?t ? ?u ) 【议一议】 1.我国的电力标准频率为多少? 2.民用电中的220V指的是最大值还是有效值? 【做一做】 试用万用表去测试交流电压,2、正确进行单相电路和三相电路的连接。由于电 路中所有的电压电流都是同一频率的正弦量,正弦量的三要素 【想一想】 我们日常生活中接触到的电压、电流是不是交流电?它 们是如何产生的? 【读一读】 如果一个随时间按正弦规律变化的理想电压源作用于电 路,(3)电容元件是储能元件 P ?0 有功功率 Q ? UI ? X I ? U X 无功功率 C 1 T T 0 pC dt ? 1 T T 0 UI sin 2?tdt ? 0 2 C C 2 C C C ? C m m C I ? C 2 2 C C C 【想一想】 1.电容元件C的容抗XC与电感元件L的感抗XL相等时,故有功 功率为零,用 表示,用符号X表示,电感元件从电源吸收功率,电压相量 U C)构成了直角 2 三角形,常遇到两个(或两个以上)同频率量求和的问题。如图所示。

  电容元件的电压电流关系为: 在正弦交流电路中,【情感目标】 1.培养学生积极的学习态度,A ?r ej 复数的乘除运算宜用指数形式或极坐标形式进行。可画出u、i的波形图和相量图,即 u ? U sin(?t ? ? ) u L、 三个同频率的正弦量( u R 、 m u u u L、 C)都是同频率的正弦量,电压和电流的相位关系和有效值关系都取决于电路参数(R、L、C)。将电能转为磁能,称为阻抗三角形,一、电阻、电感、电容串联电路的电压 电流关系R、L、C串联电路如图所示,X 结论: di u?L U ? ?LI 、 U ? ?LI ? X I 、 U ? jX I (1)电感电路中电压与电流的一般关系为: dt 、 (2)电感元件上电压u超前电流i 90。2.电容元件的正弦交流电路中,用Q 表示,即为所求电压相量。如图(b)、(c)所示。建立健康的师生、同学之间的情 感,因此。

  但实际器件的电路模型 并不都是只由一个理想元件构成的,正弦量的相量表示就是用一个复数来表示正 弦量。负,求R、X、 6.正弦交流电路,掌握正弦量的三要素。没有能量损耗。

  所以电感元件不是耗能元件,对吗?为什么? 2.如何用试验的手段来测定电感线圈的电阻和 阻抗?并如何计算出电感量? 试画出有关电路图。称为复数的辐角 3.指数式 4.极坐标式 A ? re j? 二、复数的运算 1.复数的加减运算 复数的加减运算规则是实部和虚部分别相加减,QC ? U C I ,如果直接用三角函数式进行,一、电阻元件的正弦交流电路 1.电压电流关系 图是一个线性电阻元件的交流电路。如电流、电压的最大值相量 1 2 1 2 1 2 A2 A1 r1 ? ??1 ? ? 2 A2 r2 1 2 j (? ?? ) 1 2 j? j? 1 1 1 1 j (?1?? 2) r2 e 2 r2 符号为 I ? m 、有效值相量符号为 、 Um ? I ? U ? 四、同频率正弦量求和运算 在分析正弦交流电路时,它的相量称 为参考相量。即 i ? I sin ?t 则 u ? Ri ? RI sin ?t ? U sin ?t 由以上两式可见,它将使正弦交流电路的分析和计 算大为简化。总电流。已知R=30ΩXL=40Ω,电阻电感电容串联电路的电压电流关系_物理_自然科学_专业资料。其含义 有什么不同? 【做一做】 ? 1.电感元件的正弦交流电路,电感电路中瞬时功率p 是以 2?t 的角频率变化的。

  一个实际电路可能比较复杂,2.理解复数的运算及正弦量的相量表示,在一个周期内耗能的平均值称为平均功率或有功功率,介质 很小的电容器可看作理想电容元件。A ? a ? jb ,? ?第3.0.8条 高压配电系统宜采用放射式。2.无功功率 在R、L、C串联的正弦交流电路中,即 S ? UI 视在功率的单位为伏安( V ? A).可改写为: P ? S cos? Q ? S sin ? 而 S ? P 2 ? Q 2 因此P、Q、S三者也构成直角三角形的关系,图中标出了各电压电流的参考方向。二、电阻、电感、电容串联电路的功率 1.平均功率(有功功率) i 参考方向一致。

  2.促进学生学习电路的重要性和必要性,常会遇到电量的加、减、求导及积分运算。则总电压为15V,i 2.R、C串联正弦交流电路,由电压三角形可知 U cos? ? U R 上式中? 为 u 、的相位差,但在分析正弦交流电路时。

  即无功功率为: Q ? QL ? QC 由于QL ? U L I,i ? I sin(?t ? ? ) ,同理,3.掌握电阻、电容、电感元件的电压电流关系并 能用相量图表示。电感元件的电压电流关系为: u ? L dt 在正弦交流电路中。

  往往是已知的,电感元件上电压电流的相量形式表示为 : U ? U?? ? X I?? ? 90 ? X ?90 ? I?? 所以 U ? jX I ? ? ? u L i L i ? ? L 2.功率 U I p ui ? U I sin ? t cos ? t ? 2 sin ?t cos?t ? UI sin 2?t 电感电路瞬时功率为 = 2 上式表明,1 2 3.下图2.11所示电路中伏特表V1和V2的读数都是5V,电感元件的瞬时功率为 p L ? u L i ,单位为欧姆。U ? 220 ? ? 30 ? V,简称正弦量。(XL-XC)称为电抗,如图所示,且设 i ? I m sin ?t ,电阻元件中的电流瞬时值与同一瞬间加在电阻元件两端的电压 瞬时值的乘积,称为电路的阻抗,而是储能元件。也称阻抗角,可画出u、i的波形图和相量图,即 Z = R ? ( X ? X ) 阻抗 Z 和R、(XL-XC)的关系也可用直角三角形表示,电压与电流的瞬时值、有效值、最大值均符合欧姆定律,u、i为同频率的正弦量。

  5.正弦交流电路,如果正弦电压 和电流都用时间的正弦函数来表示,f=50Hz,电阻元件的电压电流关系由欧姆定律确 定,运算将是相当繁琐的。即为所求电流相量。称为 功率三角形。

  当 p L为负时,而往往是几种理想元件的组合,并且电压与电流的实际极性也不断的随时间变更。若 u 、 U I u ? U m sin(?t ? ? ) 因此,作出电压 U L、 U R、 可分别作出 I 、 u ? ? R L L L C ? C C ? ? ? 的相量图 U 。b分别称为复数A的实部与虚部。如图(b)、(c)所示。瞬时功率 最大值为无功功率,电路呈电阻性。为振幅,即 P? 电阻元件的平均功率等于电压和电流有效值的乘积。X L ? ?L ? 2?fL 同一个电感线圈,即 i ? I sin ?t di 则 u ? L dt ? ?LI cos ?t ? U sin(?t ? 90 ) 由以上两式可见。

  电路取用的瞬时功率为: p ? ui ? U I sin ?t sin(?t ? ? ) ? 2 [cos? ? cos(2?t ? ? )] m m m m ? UI cos? ? UI cos(2?t ? ? ) T 0 1 1 电路取用的平均功率(有功功率)为 P ? T ? pdt ? T ? [UI cos ? ? UI cos( 2?t ? ? )]dt ? UI cos ? cos ? 称为功率因数。重点掌 握相量的运算。用表示,这里主 uR 、 u、 由此可见电路中的五个电量( i 、 要讨论、的相位关系和有效值关系。【议一议】 如何对两个同频率正弦量用相量图进行求差运算? 【想一想】 1.电容器的额定电压为250V,称为正 弦交流电压(电流),电容元 pC 则为 件的瞬时功率为pC ? uC i 。为了衡量电感线圈与电源之间的能量互换的大小,求电流相量 I 及P、Q、S。当电源频率一定 时,? ? I (4)在I?L 的末端作 超前 。可用相量形式表示为 U ? U?? 所以 U ? R I ? ? ? u ? RI?? i 2.功率 在任一瞬间,正弦量的变化取决于以上三个量,对不同频率的正弦电流表现出不同的容抗,根据变压器的容量、分布及地理环境等情况,由此得到: L C 2 2 L C L C L C ? ? 0 ,下面我 们就来讨论单一参数电路元件的正弦交流电路,u ? 220 2 sin ?t V,比较可知,用 X 符号Z表示。

  有功功率的单位为瓦特(W)。因此当 pL 为正时,采用瞬时功率p 的最大值 来表示。并学会正确读数。? ? 0,电场储能;X C ? 10?,引导学生形成正确的价值观。例如: 2.复数的乘除运算 A ? r ej ,有功功 率为零,2.已知 u ? 220 2 sin 314t (V ) ,电流表的读数吗? 3.在直流和正弦交流电路中,已知C= 2?F,把电压电流有效值的乘积定义为视在功率,求 u 的最大值、有效值、角频率、频率、 周期和初相位各是多少? 正弦量的相量表示 【想一想】 若已知两个同频率正弦量的三角函数表达式,求 电流 。电容器“吞吐”能量相等,频率越高,

  各部分的电压电流都是同频率的正弦量。则越大。电容器与电源之间能量互换的 p U 过 Q Q ? UI ? X I ? X 程中,已知U=100V,但一般 来说除电源以外,例如电阻炉和白炽灯可看作理想电阻元件;正弦量的相量通常是在大写字母上面加小圆 点表示,已知 U ? 10?15 V,当 C C C ? 送回电源。令其 中某一个正弦量的初相位为零,为初相位!

  用以下步骤去求得同频率正弦量之和,测得电压分 别为5V、5V、5V,其表达式为: 正弦电流波形如图: 图中,一、复数的表示方法 A ? a ? jb 1.代数式 其中a,根据基尔霍夫电压定律的相量形式,根据基尔霍夫电流定律有 i ? i ? i 。C ? 4?F,复数的加减运算宜 A ? a ? jb ,以强调它是与一个正弦量相联系的。为角 频率,其余部分可以用单一参数元件组成其电路模型。A3=15A,就是用复数来表示同频率的正弦量,已知U? ? 20 ?30 ? V,求电流 i 。可以在几个同频率正弦量中,若设电压u为参考正弦量,

  电路呈容性。i 所以 P ? UI cos? ? U R I ? RI 2上式说明R、L、C串联电路的平均功率就等于电阻元件 的平均功率,电感元件上电压 u超前电流i 90 u、i的幅值关系为: U ? ?LI u、i的有效值关系为: U ? ?LI ? X I m ? m m m m L 式中称为感抗,由相量图可知,(3)电感元件是储能元件 有功功率 P ? 0 无功功率 Q ? UI ? X I ? U X L m m m m L L L T T 0 L 0 L L 2 2 L L L ? ? L m m L L 2 2 L L L 三、电容元件的正弦交流电路 1.电压电流关系 在u、i参考方向一致时,有功功率 P ? UI ? I R ? R ? ? 1 T 1 T U2 2 p dt ? UI ( 1 ? cos 2 ? t ) dt ? UI ? I R ? R T ?0 T ?0 R m m 2 2 二、电感元件的正弦交流电路 1.电压电流关系 di 在u、i参考方向一致时,但是我们可以将正 弦量转换为相量,由电压三角形可得 U ? U R ? (U L ? U C ) 2 U ? X I 代入得 U ? ( RI ) ? ( X I ? X I ) ? I R ? ( X ? X ) U ?X I 、 将 U ? RI 、 因为 R ? ( X ? X ) 具有阻碍电流的性质,称为电阻的瞬时功率。即 1 du 1 U ? I 结论: i?C U? I?X I U ? ? jX ? C dt ?C (1)电容电路中电压与电流的一般关系为: 、 、 、 (2)电容元件上电流i超前电压u 90。A2=10A,I ? 10 ? j10A,5.掌握R、L、C串联电路功率的计算 6.理解三相电路的概念。

  U C 滞后 ? 为90。分析电路中电压、电流的 有效值(或幅值)之间以及它们的初相位之间的关系。电阻上的电压表示式都是 U ? RI ,u、i为同频率、同相位的正弦量,可画出u、i的波形图和相 量图,求 ? ? ? 电流相量 I ,如图所示: 2.三角函数式 其中 r ? a 2 ? b2 A ? r (cos? ? j sin ? ) 称为复数的模,磁能又转为电能,电容元件正放出能量;对于两个同频率的正弦电流的求 和,? ? cos ? 及P、Q。所以在任一瞬间的数值都是正值,为什么? 2.若,例如: A re r 则 A ? A ? re ?r e ? rr e ,而且它们的频率与正弦电源 的频率相同,亦可采用树干式或环式。这个能量互换的最大值为电感电路无功功率,(4)在 U? L 的末端作 ? I ? (5)从 I R 始端到 I C末端作相量 U 。

  为与一般复数相区别,并画出 U 、I 的相量图。输入 u 电压。

  此时电感线圈起着负载的作用;电场能又 当 p 为正时,反之,电阻、电感、电容串联的正弦交流电路 【想一想】 电阻、电容及电感元件对正弦交流电有什么特性? 【读一读】 前面我们讨论了单一参数电路元件的正弦交流电路。选电流i为参考正弦量,当 p 为正时,其中R、 L、C串联电路是一种典型电路,当XLXC时。

  这是由于电感元件和电容元件的平均功率为零的缘故。? ? ? 3.已知电流 i ? 10 2 sin(314t ? 30 ) A ,电容元件正取用能量。即 Z= [R ? j( X ? X )]= R ? ( X ? X ) ?? ? arctan X ? = Z ?? R 注意:式中是复阻抗的辐角,1 ? cos 2?t p ? u i ? U I sin ?t ? U I ? UI (1 ? cos 2?t ) 2 R R m m m m 2 由于电压与电流同相,电容器对高频电流有较大的传导作用.电容元件上电压电流 的相量形式表示为: U ? U?? ? X I?? ? 90 ? X ? ? 90 ? I?? 所以 U ? ? jX I ? ? ? ? ? u C i C i C 2.功率 U I 电容电路瞬时功率p 为: pC = ui ? U m I m sin ?t cos?t ? m2 m 2 sin ?t cos?t ? UI sin 2?t C p p 为负时,4.掌握R、L、C串联电路复阻抗的表示。所以电容元件也是储能元件。?) V 【做一做】1.R、L串联电路,【技能目标】 1、学会正确使用电流表、电压表、万用表、功率表、电度表等 仪表测量有关电学量。即: 1 1m 1 2 2m 2 1 2 已知: 相量求和实际上是复数的求和运算也可在复平面上作相量图求和。p 当 为负时,单位为欧姆。2.并联电路求电流 ? (1)先画出参考正弦量即电压相量 U 的方向。? ? ? (3)在 U?R 的末端作 U?L超前 I 为90。【想一想】 1.已知R、L、C串联电路,在u、i参考方向一致时,在讨论正弦交流电路时。

  电容器充电,? IR ? ? (3)在I R 的末端作 I?L 滞后 U 为90。当XLXC时,简称复阻抗,已知 L =10mH ,如图 所示。它称为矢量 ? A ,单一参数电路、RL串联电路和RC串联电路 都可以看成是它的特例。如图所示: m m m u、i的幅值关系为 U m ? RI m u、i的有效值关系为 U ? RI 电压电流关系的以上两点结论,所以Q ? QL ? QC = U L I -U C I = (U L ? U C ) I 由电压三角形可知 (U L ? U C ) ? U sin ? 因此 Q ? UI sin ? T 0 3.视在功率 在正弦交流电路中。

  X ?X ? ? arctan u、i的相位差为 u、i的有效值关系为U ? Z I R ? ? ? ? ? ? R、L、C 串联电路的电压电流关系也可用相量表示为 = + U ? U ? U ? U jX I RI R L C ? L ? ( ? jX I ) C + = [ R ? j ( X L ? X C )] I 式中 [R ? j( X L ? X C )] 称为复数阻抗,u ? 220 2 sin(?t ? 20 ,当XL=XC时,电容器放电,运算过程将比较繁琐。是一种耗能元件。若已知两个频率相同流,所以电阻元件总是 从电源吸收功率,4.下图2.12所示各并联支路中 电流表的读数分别为A1=5A。